The objective of this article is to build a cartographic representation of drive time for freight transport companies from the 13th most important cities in Mozambique.

This model is based on an open source dataset of transport networks (OpenStreetMap, 2016) in Mozambique and the bordering countries. It is simulating, at a fine-grained level, the behaviours of truck drivers by taking in account both, barriers (one-way roads, pedestrian or cycling paths, tracks for agricultural purpose...), and common situations for drivers (border crossing time, turns and U-turns, junctions, local road crossing a regional road...). The model define six classes of roads (from local roads to highways) for more than one million kilometres of roads, with specific average traffic speed empirically deduced from a sample of transit times of a Mozambican freight transport company. This complex network of more than 1 million of road sections is analysed with ArcGIS, in order to build drive time areas (2, 4 and 6 hours), from the city centres of the major urban areas (more than 100000 inhabitants, GeoNames, 2016). The map illustrates the interconnections of these urban areas and the problems of accessibility of their hinterlands in term of land transportation.
! This article is only a short abstract of the original one, in french !

1 / Building the roads network

Open Street Map (www.openstreetmap.org):

- Botswana (BW) : 78502 roads sections
- Congo Democratic Republic (CD) : 197038 roads sections
- Lesotho (LS) : 79763 roads sections
- Malawi (MW) : 85159 roads sections
- Mozambique : 157368 roads sections
- South-africa (ZA) : 502417 roads sections
- Swaziland (SZ) : 22274 roads sections
- Tanzania (TZ) : 166555 roads sections
- Zambia (ZM) : 53923 roads sections
- Zimbabwe (ZW) : 82 394roads sections

Geofabrik (http://download.geofabrik.de/africa.html)

2 / Building the model

Fig 1 : Modèles dans la géographie des transports

Geography of transport systems, Jean-Paul Rodrigue et al., 3rd édition, 2013 :
Each [level is built] upon the other, implying for instance that the estimation of accessibility cannot be assessed without information about distance and that spatial interactions are derived from accessibility assessments:

- Distance. The most fundamental element of geography in general and transport geography in particular. Distance can be represented in different manners, from a simple Euclidean distance calculation to a complex estimation of a logistical distance that considers all the tasks necessary for the realization of a movement.
- Accessibility. Defined as the measure of the capacity of a location to be reached by, or to reach different locations. Therefore, the capacity and the arrangement of transport infrastructure are key elements in the determination of
accessibility. It is thus based upon the concept of location and distance.
- Spatial Interaction. A realized movement of people, freight or information between an origin and a destination. It is a transport demand / supply relationship expressed over a geographical space.

Routing is a specific category of spatial interaction that considers a given set of origins and destination for which specific (often optimal) routes are found.

- Transportation / Land Use Models. A complex framework trying to assess the numerous relations and feedback effects between transportation and the spatial structure.

2.1 / Classes of roads networks

roadstype	fclass	Distance cumulée en km	\% km	Nombre de routes
highway	trunk	32 305,86	2,45	6477
highway	primary	17 124,76	1,30	2517
highway	secondary	7217,16	0,55	934
highway	motorway	3887,58	0,30	3000
highway	motorway_link	1203,88	0,09	3336
highway	tertiary	769,96	0,06	150
highway	unclassified	199,70	0,02	40
highway	track	39,72	0,00	14
highway	trunk_link	20,56	0,00	30
highway	residential	16,23	0,00	19
highway	service	4,91	0,00	6
highway	track_grade1	1,43	0,00	1
highway	primary_link	0,46	0,00	3
highway	living_street	0,32	0,00	1
highway	secondary_link	0,02	0,00	1
secondary	secondary	95073,57	7,22	20798
secondary	primary	52 886,68	4,02	12991
secondary	trunk	3714,15	0,28	1055
secondary	trunk_link	307,48	0,02	894
secondary	primary_link	283,64	0,02	1830
secondary	secondary_link	135,37	0,01	1200
local	unclassified	342 480,48	26,01	265663
local	residential	197498,16	15,00	552025
local	tertiary	181 968,45	13,82	37945
local	track	144228,49	10,95	174820
local	unknown	90536,28	6,88	35793
local	track_grade3	33035,40	2,51	11180
local	service	19 485,83	1,48	73435
local	track_grade2	6001,39	0,46	2848
local	track_grade1	2 119,68	0,16	1260
local	tertiary_link	1064,00	0,08	1068
local	living_street	731,32	0,06	2967
non_for_car	path	62 937,51	4,78	170539
non_for_car	track_grade4	7424,98	0,56	3047
non_for_car	footway	5 986,88	0,45	28987
non_for_car	track_grade5	5071,52	0,39	4932
non_for_car	cycleway	726,13	0,06	721
non_for_car	pedestrian	257,07	0,02	1224
non_for_car	bridleway	102,53	0,01	202
non_for_car	steps	32,94	0,00	1439
		1316882,51		1425392

Tab 1 ; roads type
2.2 Defining roads speed

roadstype	moyspeed	Total de la distance en km	$\% \mathrm{~km}$	Nombre de routes
highway	80	7491,09	0,61	2018
highway	70	49934,79	4,05	12092
highway	60	4368,47	0,35	1266
highway	50	19,64	0,00	29
highway	40	542,70	0,04	772
highway	30	263,66	0,02	303
highway	20	164,82	0,01	45
highway	10	7,38	0,00	4
secondary	50	105,34	0,01	25
secondary	45	32,57	0,00	35
secondary	40	57946,89	4,69	16299
secondary	30	92981,95	7,53	22224
secondary	20	1333,24	0,11	177
secondary	10	0,91	0,00	8
local	50	2,21	0,00	1
local	45	14,60	0,00	30
local	40	2782,20	0,23	313
local	30	7279,20	0,59	19358
local	26	2,77	0,00	28
local	25	0,85	0,00	19
local	20	184287,42	14,93	41179
local	15	1,11	0,00	19
local	10	792607,31	64,21	1087056
local	5	123171,82	2,61	11019
		342,94		

Tab 2 : type of roads and speed

2.3 / Turns, jounctions and one way

Direction	Description	Secondes
Orientée	De la voie Local à Local Ne traverser aucune voie	2
Orientée	De la voie Local à Local Traverser la voie Local	8
Orientée	De la voie Local à Local Traverser la voie Secondaire ou principal	20
Orientée	De la voie Local à Secondaire	12
Orientée	De la voie Secondaire à Local	12
Orientée	De la voie Secondaire à Secondaire Ne traverser aucune voie	2
Orientée	De la voie Secondaire à Secondaire Traverser la voie Local	6
Orientée	De la voie Secondaire à Secondaire Traverser la voie Secondaire ou principal	60
Inversé	De la voie Local à Local	12
Inversé	De la voie Local à Secondaire	60
Inversé	De la voie Secondaire à Local	20
Inversé	De la voie Secondaire à Secondaire	20
Tournant à droite	De la voie Local à Local	8
Tournant à droite	De la voie Local à Secondaire	12
Tournant à droite	De la voie Secondaire à Local	8
Tournant à droite	De la voie Secondaire à Secondaire	12
Tournant à gauche	De la voie Local à Local	8
Tournant à gauche	De la voie Local à Secondaire	40
Tournant à gauche	De la voie Secondaire à Local	20
Tournant à gauche Fin $21 \cdot$ tirnc	De la voie Secondaire à Secondaire naltioc (Δ rnficl	32

Direction	Largeur (degrés)
OOrientée	60
O Inversé	60
\diamond Tournant à droite	120
\bigcirc Tournant à gauche	120

Fia 0 の • tirne and annlac

roadstype	oneway	Nombre de routes
highway	B	8124
highway	F	8403
highway	T	2
secondary	B	25104
secondary	F	13605
secondary	T	59
local	B	1138941
local	F	19632
local	T	431
Fig 3.1 : one way		

Fig 3. : example in Maputo (B in gris, F in'red and T in blue)
$3 /$ Core cities

22061451 inhabitants, GeoNames, 2016

country	asciiname	population	geonameid	rank
MZ	Maputo	1191613	1040652	1
MZ	Matola	675422	1039854	2
MZ	Beira	530604	1052373	3
MZ	Nampula	388526	1033356	4
MZ	Chimoio	256936	1049261	5
MZ	Nacala	224795	1035025	6
MZ	Quelimane	188964	1028434	7
MZ	Tete	129316	1026014	8
MZ	Xai-Xai	127366	1024552	9
MZ	Maxixe	119868	1039536	10
MZ	Ressano Garcia	110000	1028079	11
MZ	Lichinga	109839	1043893	12
MZ	Pemba	108737	1028918	13
MZ	Dondo	78648	1024696	14
MZ	Antonio Enes	74624	1052944	15
MZ	Inhambane	73884	1045114	16
MZ	Cuamba	73268	1047660	17
MZ	Montepuez	72279	1037125	18
MZ	Chokwe	63695	1048364	19
MZ	Chibuto	59165	1049861	20
MZ	llha de Mocambique	54315	1037390	21
MZ	Mutuali	30523	1088155	22
MZ	Mocimboa	27909	1037370	23
MZ	Manjacaze	25541	1040938	24
MZ	Macia	23156	1024701	25

Fig 4 - Example bewteen Maputo and Beira-Chimoio (illustration)
4 Validation and main results
see final map (annex 4) or the pdf file.

5 / Discussion

Annex 1 / Geofabrik OSM Standard, OpenStreetMap Data in Layered GIS Format (Version 0.6.7)

All kinds of roads from motorways to gravel tracks as well as cycleways, footpaths, etc.
Additional attributes:

Attribute	PostGIS Type	Description	OSM Tags
ref	VARCHAR(20)	Reference number of this road ('A 5', 'L 605', ...)	ref=*
oneway	BOOLEAN	Is this a oneway road?	oneway $=*$
maxspeed	SMALLINT	Max allowed speed in km / h	maxspeed=*
layer	SMALLINT	Relative layering of roads ($-5, \ldots, 0, \ldots, 5$)	layer=*
bridge	BOOLEAN	Is this road on a bridge?	bridge=*
tunnel	BOOLEAN	Is this road in a tunnel?	tunnel=*

Roads of type 5111 (motorway) and 5112 (trunk) are always oneway.

The following feature classes exist in this layer:

code	layer	fclass	Description	OSM Tags
511x	roads		Major roads	
5111	roads	motorway	Motorway/freeway	highway=motorway
5112	roads	trunk	Important roads, typically divided	highway=trunk
5113	roads	primary	Primary roads, typically national.	highway=primary
5114	roads	secondary	Secondary roads, typically regional.	highway=secondary
5115	roads	tertiary	Tertiary roads, typically local.	highway=tertiary
512x	roads		Minor Roads	
5121	roads	unclassified	Smaller local roads	highway=unclassified
5122	roads	residential	Roads in residential areas	highway=residential
5123	roads	living_street	Streets where pedestrians have priority over cars	highway=living_street
5124	roads	pedestrian	Pedestrian only streets	highway=pedestrian
513x	roads		Highway links (sliproads/ramps)	
5131	roads	motorway_link	Roads that connect from one road to another	highway=motorway_link
5132	roads	trunk_link	of the same of lower category.	highway=trunk_link
5133	roads	primary_link		highway=primary_link
5134	roads	secondary_link		highway=secondary_link
514x	roads		Very small roads	
5141	roads	service	Service roads for access to buildings, parking lots, etc.	highway=service
5142	roads	track	For agricultural use, in forests, etc. Often gravel roads.	highway=track without tracktype specification
5143	roads	track_grade1	Tracks can be assigned a "tracktype" from 1 (asphalt or heavily compacted) to 5 (hardly visible). A detailed description is here: http://wiki.openstreetmap.org/wiki/Tracktyp e	... with tracktype=grade1
5144	roads	track_grade2		... with tracktype=grade2
5145	roads	track_grade3		... with tracktype=grade3
5146	roads	track_grade4		... with tracktype=grade 4
5147	roads	track_grade5		... with tracktype=grade5
515x	roads		Paths unsuitable for cars	
5151	roads	bridleway	Paths for horse riding	highway=bridleway or highway=path with horse=designated
5152	roads	cycleway	Paths for cycling	highway=cycleway or highway=path with cycle $=$ designated
5153	roads	footway	Footpaths	highway=footway or highway=path with foot=designated
5154	roads	path	Unspecified paths	highway=path without cycle/foot/horse=designate d
5155	roads	steps	Flights of steps on footpaths	highway=steps
			Unknown	
5199	roads	unknown	Unknown type of road or path	highway=road

Note: For large excerpts where the roads data becomes too large to fit all roads in one shape file, we will split the roads layer in six: "major" (codes 5110-5119), "minor" (codes 5120-5129), "link" (codes 5130-5139), "small" (codes 5140-5149), "paths" (codes 5150-5159) and "other" (all others).

Annex 2 / Map of roads for « highway » and « secondary » classes

Annex 4 / Map of roads for « local » classe

Annex 4 / Download the final map (v15)

Annex 5 / Resources and scripts used with ArcGis 10.2 (Network Analysis)
123456789 ' pre logic VBScript roadstype (text): building roadds types

123456789 'pre logic VBScript roadstlass (entier court): building roads classes

123456789 \# Ditance for each road séctebrainklmi) (djsthねm) =

